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a b s t r a c t

This paper describes a method for building efficient representations of large sets of brain images. Our
hypothesis is that the space spanned by a set of brain images can be captured, to a close approximation,
by a low-dimensional, nonlinear manifold. This paper presents a method to learn such a low-dimensional
manifold from a given data set. The manifold model is generative—brain images can be constructed from
a relatively small set of parameters, and new brain images can be projected onto the manifold. This
allows to quantify the geometric accuracy of the manifold approximation in terms of projection distance.
The manifold coordinates induce a Euclidean coordinate system on the population data that can be used
to perform statistical analysis of the population. We evaluate the proposed method on the OASIS and
ADNI brain databases of head MR images in two ways. First, the geometric fit of the method is qualita-
tively and quantitatively evaluated. Second, the ability of the brain manifold model to explain clinical
measures is analyzed by linear regression in the manifold coordinate space. The regression models show
that the manifold model is a statistically significant descriptor of clinical parameters.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Many neuroimaging applications require a summary or repre-
sentation of a population of brain images. The conventional ap-
proach is to build a single template, or atlas, that represents a
population (Lorenzen et al., 2005; Joshi et al., 2004; Avants and
Gee, 2004). Recent work introduced clustering-based approaches,
which compute multiple templates in a data driven fashion (Blezek
and Miller, 2007; Sabuncu et al., 2008). Each template represents a
part of the population. In a different direction, researchers pro-
posed kernel-based regression of brain images with respect to an
underlying parameter (Hill et al., 2002; Davis et al., 2007; Ericsson
et al., 2008). This yields a continuous curve in the space of brain
images that estimates the conditional expectation of a brain image
given the parameter value. A natural question that arises based on
these investigations is whether the space spanned by a set of brain
images can be approximated by a low-dimensional manifold. Our
hypothesis is that a low-dimensional, nonlinear model can effec-
tively represent variability in brain anatomy. This paper describes
a method to learn a manifold model from a given population and
evaluate its geometric fit and statistical properties.

Recent work on statistical analysis of brain images with clinical
data shows that shape is a statistically significant predictor for var-
ious clinical parameters (Chou et al., 2008; Davatzikos et al., 2008;
Apostolova and Thompson, 2007; Baron et al., 2001; Busatto et al.,
ll rights reserved.
2003; Callen et al., 2001; Chung et al., 2001; Davatzikos et al.,
2001). As such, we are interested in finding a manifold representa-
tion that captures shape variability across large sets of images.
Such a manifold model is interesting in several ways. The manifold
parametrization gives rise to a coordinate system for the data that
indicates its position on the manifold. If the manifold is con-
structed to reflect shape differences, then brain shape can be quan-
tified in this new coordinate system. In this way, the manifold
coordinates can be used as a proxy for statistical analysis of brain
populations. The manifold coordinates of a particular image (e.g.
patient in a clinical setting) could be used to compare against
examples in a database with similar brain shape and known clini-
cal history and to predict the likelihood of specific pathologies. Pro-
jections of images onto the manifold of brain images could also be
used to construct priors or atlases that would aid in automatic pro-
cessing or clinical studies.

The approach in this paper builds on existing manifold learning
techniques to obtain a manifold model from a set of brain MR
images. Manifold learning is a specific approach to nonlinear
dimensionality reduction based on the assumption that data points
are sampled from a low-dimensional manifold embedded in a
high-dimensional ambient space. The aim is to uncover the low-
dimensional manifold structure from the samples in the high-
dimensional ambient space. Many methods for manifold learning
have been proposed in the machine learning literature. Much of
the recent work (Roweis and Saul, 2000; Belkin and Niyogi,
2003; Schölkopf et al., 1998; Tenenbaum et al., 2000) has focused
around global or spectral methods. These methods have a closed
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form solution based on the spectral decomposition of a matrix that
is compiled based on local properties of the input data. The bulk of
manifold learning research has focused on low-dimensional mani-
folds embedded in high-dimensional spaces with Euclidean met-
rics. The space of brain images, however, does not fit directly
into this setting. Research in shape analysis has shown that a
Euclidean metric is not suitable for capturing shape differences
in images (Twining et al., 2008). In computational anatomy,
researchers commonly resort to metrics based on coordinate trans-
formations that align the images (Blezek and Miller, 2007; Sabuncu
et al., 2008). Therefore, the low-dimensional manifold we aim to
learn is embedded in the space of images with a metric induced
by coordinate transformations on the image-domain, as illustrated
Fig. 1. Note that the structure induced by image metrics based on
transformations is often described as a manifold—in this paper
we reserve this term to refer to the manifold of brain images as de-
scribed by the data.

In many neuroimaging applications, it is necessary to map from
ambient space to manifold coordinates or to construct brain
images given manifold coordinates, which requires a generative
model. These are the capabilities provided for linear models by
principal component analysis (PCA), for instance, that allow one
to compute loadings (manifold coordinates), to project data on
the linear subspace, and to compute the residual or approximation
error associated with these projections. Manifold learning methods
thus far are mostly concerned with finding a low-dimensional
parametrization of the data, but do not generally provide the tools
to project or construct new data points. We propose to use the
manifold coordinates obtained by one of the global manifold learn-
ing approaches to construct a generative manifold model that
explicitly describes the manifold as a parametric surface in the
ambient space. The parametric surface is formulated as a kernel
regression over the manifold coordinates, that is, an estimate of
the mean of the distribution of the manifold given the manifold
coordinate. The reverse, a coordinate mapping from ambient space
to manifold coordinates, is achieved in a similar manner. Weighted
averaging of the manifold coordinates of the initial data set, again
by kernel regression, yields a continuous mapping in the ambient
space. The proposed methodology for the generative manifold
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Fig. 1. (a) Illustration of image data on a low-dimensional manifold embedded in a diffeo
a spiral. (c) The Fréchet mean in the space induced by a metric based on coordinate tran
manifold reflects the image with average parameter values.
model is motivated by the statistical representation of scattered
data using principal surfaces (Hastie and Stuetzle, 1989). In
previous work (Gerber et al., in press), we describe a formulation
by which generative manifold models via kernel regression give
rise to principal surfaces, a nonlinear extension to PCA, as formally
defined by Hastie and Stuetzle (1989). Thus, the proposed frame-
work for brain image analysis represents a statistically sound,
higher-order representation of the space of brains.

In (Gerber et al., 2009) we showed that it is possible to approx-
imate the space of brain images by a low-dimensional manifold. In
this paper we present the method in greater depth. Additionally we
show that the learned manifold can be used for statistical analysis
on brain image populations. We apply the proposed approach to
the OASIS and ADNI brain database, and show that the learned
manifold provides a good fit in terms of projection distance and
as a proxy for statistical analysis. Linear regression of the learned
manifold coordinates with several clinical parameters provides
strong evidence that the proposed manifold representation of brain
image data sets captures important clinical trends.
2. Related work

An important aspect of our work is the ability to measure image
differences in a way that captures shape. It is known that the L2

metric does not adequately capture shape differences (Twining
et al., 2008). There are a variety of alternatives, most of which con-
sider coordinate transformations instead of—or in addition to—
intensity differences. A large body of work (Younes et al., 2009;
Christensen et al., 1996; Dupuis and Grenander, 1998; Beg et al.,
2005) has examined distances between images using high-dimen-
sional image warps that are constrained to be diffeomorphisms.
Thus, distances between images are measured by computing a
minimal diffeomorphic map, according to an appropriate metric
on the transformation, between two images. This metric defines
an infinite-dimensional manifold consisting of all shapes that are
equivalent under a diffeomorphism. In a similar fashion, we define
a metric based on elastic deformations. Our hypothesis, however, is
that the space of brains is essentially (or approximately to within
earned data
anifold

t mean on
anifold

morphic space. (b) A set of images consists of random length/position segments from
sformations is not like any example from the set. (d) Fréchet mean on data-driven
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some level of noise) of significantly lower dimension. That is, not
all images reachable by a diffeomorphic deformation are likely to
be brains.

An alternative metric for image differences is proposed by Pless
(2003) and Zhang et al. (2006), specifically for the task of manifold
learning for sets of time-series data. They use a set of local features
(phase maps produced from Gabor filters), which are designed to
capture the local offsets of edges and other features of interest.
Although this is a computationally efficient way to capture local
shape differences, this approach does not lend itself to kernel-based
construction of images, which is essential to the work in this paper.

Several authors (Hill et al., 2002; Davis et al., 2007; Ericsson
et al., 2008) have proposed kernel-based regression of brain
images. The main distinction of the work described in this paper
is that the underlying parametrization is learned from the image
data. Our interest is to uncover potentially interesting structures
from the image data and sets of parameters that can be compared
against clinical variables. Kernel regression is used to explicitly
represent the learned manifold in the ambient space.

The very limited work on learned manifolds for medical image
analysis considers only manifolds that are generated from known
variables with individual patients. For instance, Zhang et al.
(2006) use manifold learning specifically to improve segmentation
in cardiac MR images. In that application the breathing and heart-
beat form a 2D manifold. In this paper, we propose to discover an
unknown manifold structure from a large database of brain images
in a way that explicitly learns the structure of inter subject variabil-
ity. In LEAP (Wolz et al., 2010), the Laplacian eigenmaps algorithm
(Belkin and Niyogi, 2003) is employed to build an information dif-
fusion based segmentation approach. The embedding quality is
tested based on a clustering measure and leads to highly accurate
segmentation results and indicates that the manifold assumption
is valid. This work proposes a generative approach to examine
the underlying manifold hypothesis.
3. Methodology

The approach proposed in this paper is best described as a two
step process. First we learn a parametrization that captures the
manifold structure in the data. Second we build a generative mod-
el, based on the learned parametrization, that explicitly represents
the manifold as a parametric surface in the ambient space. The
model provides the tools to construct data points on the manifold
given parameters and to infer parameters given data points in the
ambient space. We refer to the parameter space of the surface as
the manifold coordinates C � Rd where d is the intrinsic dimen-
sionality of the manifold, the ambient space as A and the manifold
as M �A.

For the first step, we use isomap (Tenenbaum et al., 2000), a
manifold learning algorithm that finds a low-dimensional Euclid-
ean configuration of points that approximately preserves geodesic
distances. Isomap computes a piecewise linear approximation to
the geodesic distance through the construction of a nearest neigh-
bor graph using the metric in the ambient space. The assumption is
that the geodesic distances between nearby samples can be accu-
rately approximated by the distance in the ambient space. This cor-
responds exactly to the definition of a manifold—the metric is
locally linear. Metric multidimensional scaling (Cox and Cox,
1994) on the pairwise approximate geodesic distances yields a
distance preserving d-dimensional Euclidean configuration of
points. Thus, applying isomap yields a discrete mapping zi ¼ ~f ðyiÞ
defined only on the original input samples, the set of images
Sy ¼ fy1; . . . ; yng 2A.

The second step is the construction of the generative manifold
model. The brain images Sy are samples from a random variable
Y with an arbitrary density p(y) defined on A. Assume we are given
a coordinate mapping f : A! C, representing a d-dimensional
parametrization of A. Then the conditional expectation g(x) =
E[Y—f(Y) = x] is a direct and explicative way to model a d-dimen-
sional surface in A. Each point on the manifold represents the
average over all brain images with the same parameter f(Y). For
example, if f maps to age, g(x) is the average brain image at each
age x. This is illustrated in (Davis et al., 2007) using manifold kernel
regression as an unbiased estimate of the conditional expectation.
However, the mapping ~f from isomap is only defined on the input
data points, furthermore it is only an approximation to the manifold
coordinates. Hence we model the coordinate mapping f on the com-
plete ambient space as a kernel regression on the discrete zi ¼ ~f ðyiÞ.

In summary the methodology consists of the following steps:

1. Compute Sz = {z1,. . .,zn} by isomap on Sy.
2. Build the generative manifold model with
� the coordinate mapping f by kernel regression over Sz and
� the explicit manifold representation g(x) = E[Y—f(Y) = x]

estimated by manifold kernel regression.

An important observation is that for both steps we do not need
an explicit representation of the data in the ambient space. Isomap
as well as the kernel regressions only rely on distances. Thus an
adaption to an image space only needs an appropriate metric on
A that captures shape differences. Furthermore both isomap and
kernel regression only require distance to be accurate between
nearby samples, large distances are not directly used but approxi-
mated using the nearest neighbors graph. We introduce a distance
measure that captures shape differences between images based on
small deformations using an elastically regularized coordinate
transformation and show how to build the generative manifold
model in this setting. The proposed distance measure is an approx-
imation to the diffeomorphic metric for small deformations, justi-
fying the notion of learning a submanifold of the space of
diffeomorphisms.
3.1. Diffeomorphic space and approximation with elastic deformations

For sets of brain images, we restrict our attention to the set of
square-integrable functions on the domain X � R3, i.e. the infi-
nite-dimensional space L2(X). In shape analysis and computational
anatomy tasks (Lorenzen et al., 2005; Davis et al., 2007; Joshi et al.,
2004) diffeomorphic mappings are often used to assess shape dif-
ferences. A diffeomorphic coordinate transformation between two
images can be written as /(r,1), where

/ðr; tÞ ¼ r þ
Z t

0
vð/ðr; sÞ; sÞds; ð1Þ

and v(r, t) is a smooth, time varying vector field. The diffeomorphic
framework defines a Riemannian metric kv(r,s)kQ, based on a differ-
ential operator Q, on the space of diffeomorphic transformations.
The Riemannian metric leads to the geodesics dðe;/Þ2 ¼
minv

R t
0

R
X kvðr; sÞkQ dr ds, here e is the identity transformation. This

induces a metric d between images yi and yj

~dðyi; yjÞ
2 ¼min

v

Z 1

0
kvðr; sÞkQ ds

such that
Z

X
kyið/ðr;1ÞÞ � yjðrÞk

2
2 dr ¼ 0

ð2Þ

with k � k2
2 the squared Euclidean distance of the image intensities.

The metric (2) is only well defined for images within the orbit of
the diffeomorphic transformations for a given template image. In
this setting, the ambient space A is a manifold in L2(X) induced
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by the Riemannian manifold of diffeomorphic transformations act-
ing on a template image.

Taking advantage of the fact that the proposed method relies
only on distances between nearby samples, we propose to com-
pute local approximations to the diffeomorphic metric. For two
images that are very similar, the diffeomorphism is close to the
identity and v is small. Because the velocities of the geodesics are
smooth in time (Younes et al., 2009), we can approximate the inte-
grals for the coordinate transform and geodesic distance by a single
vector field

/ðr;1Þ � vðr;0Þ ¼ uðrÞ; and ~dðyi; yjÞ
2 �min

u

Z
X
kuðrÞkQ dr;

subject to
Z

X
kyiðr þ uðrÞÞ � yjðrÞk

2
2 dr 6 �

ð3Þ

Thus we can locally approximate the diffeomorphic distances based
on an elastically-regularized deformation u

daðyi; yjÞ
2 ¼min

u

Z
X
kuðrÞk2

Q dr

such that
Z

X
kyiðr þ uðrÞÞ � yjðrÞk

2
2 dr 6 �

ð4Þ

with k�kQ as in the diffeomorphic setting and � allows for noise in
the images. Therefore the proposed approach effectively learns a
submanifold, estimated from the data, within the ambient space
A of diffeomorphisms.

For symmetry we define the distance as

dðyi; yjÞ ¼
1
2
ðdaðyi; yjÞ þ daðyj; yiÞÞ: ð5Þ

For this work we choose Q = ar + (1 � a)I, i.e. kuðrÞk2
Q ¼ akruðrÞk2

þð1� aÞkuðrÞk2. The free parameter a 2 [0,1], regulates the weight
of the penalty between magnitude and smoothness of the warp.
In all our experiments we set a = 0.9. For a = 1 the magnitude is dis-
regarded and a simple translation would yield a zero distance. In
our experiments we found that a penalty on magnitude adds impor-
tant information, such as for example the magnitude of the change
in ventricle size. Note that it is an open problem to show that (5)
satisfies the triangle inequality and hence is a metric or a
semimetric.

To compute the elastic deformation distance for a pair of dis-
crete images, we use a gradient descent scheme. For the L2 con-
straint

R
X kyiðr þ uðrÞÞ � yjðrÞk

2
2 dr 6 �, the squared image intensity

differences we introduce a Lagrange multiplier k

Lðu; kÞ ¼
Z

X
akruðrÞk2 þ ð1� aÞkuðrÞk2 dr

þ k
Z

X
kyiðr þ uðrÞÞ � yjðrÞk

2
2 dr � �

� �
: ð6Þ

Taking the first variation of (6) with respect to u results in the par-
tial differential equation:

ðaruðrÞ þ ð1� aÞuðrÞÞðr2uðrÞ þ ð1� aÞIÞ þ kðyiðr þ uðrÞÞ
� yjðrÞÞryiðr þ uðrÞÞ ¼ 0 ð7Þ

and the derivative of L with respect to the Lagrange multiplier k is

@Lðu; kÞ
@k

¼
Z

X
kyiðr þ uðrÞÞ � yjðrÞk

2
2 dr � � ð8Þ

We alternate between solving the PDE in (7) with finite forward dif-
ferences for a fixed k and update k based on (8) until the constraint
is satisfied. We use a multiresolution, coarse to fine, optimization
strategy to avoid local minima. Thus to register two images we have
the steps
1. Initialize u with the identity transform u(x) = 0
2. Set k = 10. This initial value depends on the range of the image

intensities with a trade-off between fast convergence for large k
and accuracy using a smaller k.

3. For each scale from coarse to fine:
(a) Solve the PDE in Eq. (7).
(b) If the mean squared error between target and moving image

is larger than � increase k and repeat (a).

Implementation details for the numerical solution of PDE’s
resulting from the minimization of transformations based on regu-
larized vector fields are described in detail in (Modersiztki, 2004).

3.2. Generative manifold model

The generative manifold model is based on a coordinate mapping
f : A! C and formulating the d-dimensional manifold M as the
conditional expectation g(x) = E[Y—f(y) = x]. The composition of
the two mappings g�f provides a projection operator onto the
manifold.

We compute the conditional expectation g(x) = E[Y—f(y) = x] of a
finite set of samples using a Nadaraya–Watson kernel regression,
which converges to the expectation asymptotically. For the coordi-
nate mapping f, we can use the point samples from
Sz = {zi,z2, . . . ,zn}, the output of isomap on the pairwise elastic dis-
tances, but they must be extended to A by some suitable scattered
data interpolation. In practice, we extend the data through an
approximation that smooths out the noisy manifold coordinates
obtained by isomap on the sample data. Thus, we also formulate
f using Nadaraya–Watson kernel regression.

The level sets of the function f define equivalence classes of
brain images that have the same manifold coordinates. The condi-
tional expectation g(x) = E[Y—f(y) = x] represents the distribution of
a given class of brains (i.e. choice of manifold parameters) by its
average. This formulation reflects the fact that brain images will
generally not lie exactly on a low-dimensional manifold. The
assumption is that a collection of brain images can be captured
by a probability density that includes two components: the loca-
tion on the manifold and a noise term which is transverse to the
manifold. In this way the proposed manifold resembles a nonlinear
generalization of PCA, such as the method of principal surfaces.
Informally, principal surfaces, as defined by Hastie and Stuetzle
(1989), pass through the middle of a distribution and minimize
residual variance. In recent work (Gerber et al., in press), we show
the formal relationships between the generative manifold model
based on kernel regression mappings and principal surfaces. How-
ever, that work requires an optimization over the parameters Sz of f
and is beyond the scope of this paper.

Note that the ambient space A is not Euclidean and thus the
independent variables of f and the dependent variables of g are
not in Euclidean space but in a space endowed with a metric based
on coordinate transformations. For the coordinate mapping f this
amounts to

f ðyÞ ¼
Xn

i¼1

Kyðdðy; yiÞÞziPn
j¼1Kyðdðy; yjÞÞ

: ð9Þ

Recall that d here is the elastic deformation metric as defined in
Section 3.1. For the mapping g we adopt the manifold kernel regres-
sion formulation in (Davis et al., 2007) based on computing a
weighted Fréchet mean. The Fréchet mean is defined as

ym ¼ arg miny2M
Xn

i¼1

widðy; yiÞ
2
; ð10Þ

using the kernel regression weights based on the manifold coordi-
nates. Thus, the kernel regression g with distances based on elastic
deformations yields



Fig. 2. Sampling along the first dimension of the manifold learned from images of spiral segments. The images shown are constructed, as discussed in Section 3, from the
learned manifold parametrization.
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gðxÞ ¼ arg min
y

Xn

i¼1

Kxðkx� f ðyiÞk2ÞPn
j¼1Kxðkx� f ðyjÞk2Þ

dðy; yiÞ
2
: ð11Þ

The minimization in Eq. (11) is computed by the iterative method
described in (Davis et al., 2007). This is a greedy algorithm that
alternates between computing transformations vi that minimize
d(y,yi) for a fixed target image y and updating the target image by
yðxÞ ¼ 1

n

Pn
i¼1yiðxþ uiðxÞÞ. We use an isotropic Gaussian kernel for

both mappings, i.e. KxðrÞ ¼ expð�r2=r2
x Þ and KyðrÞ ¼ expð�r2=r2

yÞ.
The bandwidths for the kernels are selected based on the average
kth nearest neighbors distance with k = 15, i.e. rx ¼ 1

n

Pn
i¼1k

xi � nnkðxiÞk and ry ¼ 1
n

Pn
i¼1dðyi;nnkðyiÞÞ with nnk being the kth

nearest neighbor of xi and yi, respectively.
The image in Fig. 1b summarizes an image data set consisting of

100 images of dark spiral segments with varying length and loca-
tion. Fig. 2 shows images constructed by the generative manifold
model learned from the 100 images. Thus, the images in Fig. 2 de-
pict samples on the manifold embedded in the ambient space.
Fig. 1 also shows the Fréchet mean of the data in the diffeomorphic
space and the Fréchet mean on the learned manifold. The Fréchet
mean of the learned manifold suggest that it can be beneficial and
necessary to model image data sets by a low-dimensional manifold.
1 www.oasisbrains.org.
2 www.loni.ucla.edu/ADNI.
3.3. Discussion of the manifold model

The distance measure fundamentally defines which features are
modeled. The metric used in this work is a trade-off between mea-
suring length of the vector field and smoothness. Spatial normali-
zation removes the effects of scale, orientation and translation
prior to computing the distance measures. If this pre-processing
step is omitted the manifold estimation will incorporate scale, ori-
entation and translation into the resulting model and, depending
on sample size, can result in masking out more subtle changes.

Note that the proposed approach is not restricted to work with-
in the diffeomorphic framework. Other distance measures can
readily be incorporated into the general manifold estimation
framework. This provides opportunities for adaption to different
image modalities or a more supervised approach. For example,
the metric can be tailored to a specific region of interest or infor-
mation theoretic measures such as Bregman divergences can be
employed. For a supervised approach clinical information could
be integrated into the metric, leading to a manifold estimation
with a trade-off between geometric, image information based, fit
and prediction of clinical information. However, this would require
a careful cross-validation strategy to avoid overfitting.

The manifold model provides additional statistical and geomet-
rical information. For example, a density estimation in the coordi-
nate space, as shown in Fig. 11, can be employed to detect subjects
with low probabilities. For a geometric notion of an outlier, the
projection distance can be used, as illustrated in Fig. 5. The notion
of projection distance and density on manifold could be combined
to build a full density estimate in the ambient space, based on den-
sity on the manifold and variance orthogonal to the manifold.

The use of isomap for building the coordinate mapping f ensures
that increasing the dimensionality of the manifold model will not
change the lower-dimensional coordinates. However, the kernel
regression representation of the manifold does not result in a per-
fect reconstruction with increasing dimension for finite sample
sizes.
Kernel regression converges asymptotically to the true condi-
tional expectation with increasing sample size and decreasing ker-
nel bandwidth. The bandwidth in the kernel regression plays an
important role, a too small bandwidth results in an overfit of the
data while a too large bandwidth results in an overly smooth esti-
mate of the conditional expectation. For example, the limit case of
a zero bandwidth results in direct reconstruction of the original
data points. On the other hand, for infinite bandwidth the regres-
sion results in a point estimate, the sample mean. The selection
of an optimal kernel bandwidth is only in theory possible, based
on knowledge of the underlying density. In this work we select
the kernel bandwidth based on the average distance of the k = 15
nearest neighbor. This is a heuristic that yields an estimate such
that, on average, 15 points are within the 60th percentile of the
Gaussian kernel and thus have a relatively large influence on the
estimate. Changing k to 10 or 20 does not affect the outcomes sig-
nificantly. Note that both dimensionality and kernel bandwidth af-
fect the quality of the manifold fit. Thus it is possible to have a
decreasing fit with increasing manifold dimension depending on
the kernel bandwidth.

Additionally the kernel regression forces the estimated mani-
fold to lie within the convex hull of the given data set. Thus, the
projection of a brain image, with a pathology not present in the ori-
ginal data set, will result in a brain image that resembles an image
from the original data set, as illustrated in Fig. 5.

4. Results

The performance of the manifold model is evaluated in two
ways. First, the geometric manifold fit is examined qualitatively
and quantitatively in terms of projection distances. Second, the sta-
tistical explanatory power of the learned manifold parametrization
with respect to clinical data is explored. The statistical significance
is analyzed with linear regression of the manifold coordinates with
the clinical parameters.

The evaluations were tested on 156 images of the ADNI data-
base and the full OASIS cross-sectional database.

4.1. OASIS data set

The OASIS brain database1 consists of T1 weighted MRI of 416
subjects aged 18–96. One hundred of the subjects over the age of
60 are diagnosed with mild to moderate dementia. The images are
provided skull stripped, gain field corrected and registered to the at-
las space of Talairach and Tournoux (1988) with a 12-parameter af-
fine transform. Associated with the data are several clinical
parameters. For the statistical analysis we restrict our attention to
age, mini mental state examination (MMSE) and clinical dementia
rating (CDR). Fig. 3 shows the population characteristics in terms
of age, MMSE and CDR.

4.2. ADNI data set

We used a subset of T1 weighted MRI of 156 subjects aged 57–
88 of the ADNI database.2 The images are provided geometry dis-
tortion corrected, intensity nonuniformity corrected and histogram
peak sharpend. We additionally processed the images with a

http://www.oasisbrains.org
http://www.loni.ucla.edu/ADNI
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Fig. 3. Histograms of age, MMSE and CDR for the OASIS data set.
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Fig. 4. Histograms of age, MMSE and diagnosis for the ADNI data set.
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histogram equalization by a piecewise linear fit to the three histo-
gram peaks of CSF, gray matter and white matter and an affine reg-
istration to an unbiased atlas. The population contains subjects
diagnosed normal (38 subjects), with mild cognitive impairment
(MCI, 84 subjects) and early Alzheimer’s disease (AD, 34 subjects).
For the statistical analysis we used age, MMSE and the diagnosis.
Fig. 4 shows the population characteristics in terms of age and
Fig. 5. Reconstructions (bottom row) of three left out images (top row) with small,
medium and large ventricle sizes. The corresponding projection distances are 1.07,
0.81 and 1.23, respectively. Note that the manifold model does not have enough
data to represent the subject on the right, which shows (a), for this data set atypical,
separation between the anterior and posterior horn.
MMSE. The 156 subjects were selected to represent a large portion
of subjects diagnosed with MCI, with the aim to span the develop-
ment from healthy to early AD.

4.3. Manifold fit evaluation

We compare the manifold fit against principal component anal-
ysis in Euclidean space by projection onto the d dominant (largest
eigenvalue) eigenvectors. A nonlinear manifold representation in
Euclidean space did not improve over PCA.

For PCA, we left one image out during the computation of the
principal components and projected this image onto the principal
components. This procedure was repeated to leave each image
out once. For the generative manifold model, this involved com-
puting isomap without the left out image yi, i.e. removing the
row and column of the corresponding image from the pairwise dis-
tance matrix, and then compute the projection distance g(f(yi))
with g and f based on the reduced data set. Fig. 5 shows three
images from the ADNI data set and reconstructions based on a
2D manifold model.

OASIS data Fig. 6 shows axial slice 80 on 2D manifold coordi-
nates obtained by the proposed method. A visual inspection re-
veals that the learned manifold detects the change in ventricle
size as the most dominant parameter (x1). It is unclear if the second
dimension (x2) captures a global trend.

Fig. 7 shows projection distances for the generative manifold
model (a) and PCA (b) as a function of the dimensionality. The pro-
jection distance is measured as the mean of the distances between
the original brain images and their projection on to the learned
manifold and scaled by the average nearest neighbor distance:

error ¼
P

idðgðf ðyiÞÞ; yiÞP
idðnnðyiÞ; yiÞ

ð12Þ

with nn(yi) the nearest neighbor of yi. A reconstruction error smaller
than one indicates that, on average, the projection onto the mani-



Fig. 6. 2D parametrization of OASIS brain MRI database obtained by the proposed
approach. For each brain image axial slice number 80 is visualized at the
corresponding location on the 2D manifold. The insets show the mean (green),
median (blue) and mode (red) of the learned manifold and the corresponding
reconstructed images. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Reconstructions using the proposed method on equally spaced grid locations
on the 2D representation shown in Fig. 6.
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fold is closer than the nearest neighbor. The projection distances for
PCA are scaled by average nearest neighbor in Euclidean space. Note
that the measurements are in different metric spaces, capturing dif-
ferent properties, and as such only provide a qualitative comparison
in terms of behavior with increasing dimension. PCA shows very lit-
tle reduction in projection distance with increased dimension,
barely one percent in the first three dimension. While the improve-
ments for the manifold model are not drastic either, roughly ten
percent in the first three dimensions, they are an order of magni-
tude larger than for PCA. The PCA projection distances do not indi-
cate a linear low-dimensional subspace, rather the almost linear
decrease suggests a isotropic normal distribution of the data. The
change in gradient at dimension three for the manifold model sug-
gests that the available data can be approximately described with a
three-dimensional manifold. Note that the manifold based ap-
proach, due to the kernel regression, will not lead to a 0 projection
distance with increasing dimension. Beyond dimension 3 the reduc-
tion in projection distances is marginal for the proposed approach.
This indicates that a three-dimensional manifold is close to achiev-
ing the minimal projection distance possible for the given amount
of data and the chosen kernel bandwidth. The projection distances
for the manifold model are smaller than the average nearest neigh-
bor distance, an indication that the learned manifold accurately
captures the data. We do not postulate that the space of brains is
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Fig. 7. Projection distances, scaled by average nearest neighbor distance (12), for the O
isomap residual (c) shows the distortion required to embed the manifold in Euclidean s
captured by a 3D manifold. The approach learns a manifold from
the available data and thus it is likely that given more samples
we can learn a higher-dimensional manifold for the space of brains.

Fig. 7 (c) shows the isomap residual as a function of the number
of dimensions. The isomap residual measures the distortion re-
quired to embed the pairwise elastic deformation distances D into
a d-dimensional Euclidean space by the 1 � R2 value between D
and De, the pairwise distance of the data points in the d-dimen-
sional Euclidean space. That is, how well do the distorted distances
De explain the original distances D. The isomap residual roughly
agree with the manifold projection distances and suggest also a
two- to three-dimensional manifold.

Fig. 8 shows axial slices of brain images generated with the pro-
posed method by applying the mapping g to regularly sampled grid
locations on the 2D manifold coordinates shown in Fig. 6, i.e. a
sampling of the learned brain manifold. The first dimension (x1)
shows the change in ventricle size. The second dimension (x2) is
less obvious. A slight general trend observable from the axial slices
is less gray and white matter as well as a change in frontal horn
ventricle shape from elongated to more circular.

ADNI data: The results from the ADNI data show similar behav-
ior as the results from the OASIS data set, although less pro-
nounced. Fig. 9 shows the projection distances as a function of
the number of dimensions for the manifold model and PCA in
Euclidean space as well as the isomap residuals. Again, PCA does
not show any indication of a low-dimensional linear subspace.
The projection distance for the manifold model are less telling than
for OASIS data set. This might be explained by the differences in
the two populations. Compared to the OASIS data set the ADNI data
set spans a much smaller age range with stronger pathologies. It
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Fig. 10. Parametrization along dimensions (a) 1, 2 and (b) 1, 6 of the manifold coordinates of the ADNI data set. For each brain image axial slice number 80 is visualized at the
corresponding location on the 2D manifold. The parametrization in (b) shows the two statistical significant manifold coordinate dimensions to explain diagnosis.
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might be expected that the ADNI data set has larger variations in
different directions due to the differences in anatomy caused by
disease progressions. This is in contrast to the OASIS data set where
a large portion of the variation is likely based on age. This explana-
tion is supported by the statistical findings for the OASIS and ADNI
data set in Section 4.4, where a description of MMSE or diagnosis in
the ADNI data set requires additional dimensions beyond those
that best describe age. In contrast, MMSE and CDR are contained
within the dimensions that best describe age for the OASIS
database.

Fig. 10 shows the parametrization along the first and second
dimension and along the first and sixth dimension. The first and
sixth dimension are the dimensions that best explain diagnosis.
Again ventricle size is the most significant change observable in
both cases along dimension one. In Fig. 13 slices of reconstructed
images along dimension one and 6 are shown, indicating some
additional differences in ventricle shape.
Fig. 11. Kernel density estimate of subjects from the OASIS database projected onto
a 2D manifold representation.
4.4. Statistical analysis

The coordinate space of the estimated manifold can be analyzed
with traditional statistical approaches. Fig. 11 shows a kernel den-
sity estimate of the distribution of brain images in the coordinate
space of the 2D manifold estimated from the OASIS database.

To evaluate the statistical predictive power of the manifold
coordinates, we fit multiple linear regression models of clinical
data versus manifold coordinates. This includes regression of age,
MMSE and CDR for the OASIS data set and age, MMSE and diagno-
sis for the ADNI data set. We compare the regression models on
manifold coordinates to regression models on PCA coordinates.
As for the geometric fit, regression models on a nonlinear manifold
model (i.e. isomap) in Euclidean space did not improve over PCA.
For further comparison we also regressed CDR (OASIS data set),
diagnosis (ADNI data set), and MMSE with age.

The regression of PCA and manifold coordinates involves a mod-
el selection process to select the independent variables that best
describe the clinical parameters. We use the Schwarz’s Bayesian
information criterion (BIC) (Schwarz, 1978) with an exhaustive
search to select the optimal model in each case. The BIC is
�2lnL(M) + kln(n) with n the number of samples, k the number of
free parameters of model M and L(M) the maximum likelihood of
model M. The BIC is derived based on the asymptotics of a Bayes
solution to the model selection problem. The BIC penalizes models



Table 1
Optimal linear regression models from the OASIS data set. The PCA coordinates are denoted with li and the manifold coordinates with xi. A < � entry denotes smaller than machine
precision.

Model t Residual R2 F p-value

age ¼ a0 þ
P5

i¼1aili 41.5/�12.5/4.2/�7.1/�8.7 10.5 0.82 404.9 <�

age ¼ a0 þ
P3

i¼1aixi
�39.3/10.0/�13.0 10.87 0.82 639.5 <�

MMSE = a0 + a1age �4.0 3.59 0.06 15.82 9.3 e�05
MMSE = a0 + a1l1 �6.6 3.40 0.16 43.13 3.3e�10
MMSE = a0 + a1x1 6.8 3.36 0.18 50.3 1.6e�11

CDR = a0 + a1age 12.0 0.27 0.25 144.5 <�
CDR = a0 + a1l1 14.9 0.26 0.34 223.9 <�
CDR = a0 + a1x1 �15.8 0.25 0.36 248.5 <�

Table 2
Optimal Linear regression models of the OASIS data set restricted to subjects aged 60
to 80.

Model t Residual R2 F p-value

age ¼ a0 þ
P2

i¼1aili 5.1/�2.0 4.3 0.18 13.3 6.1e�6

age ¼ a0 þ
P2

i¼1aixi
�4.4/2.0 4.4 0.14 9.9 1.0e�4

MMSE = a0 + a1age �1.0 4.09 0.008 1.0 0.3
MMSE = a0 + a1l1 �4.0 3.86 0.12 15.9 1.2e�4
MMSE = a0 + a1x1 4.6 3.8 0.15 20.9 1.2e�5

CDR = a0 + a1age 3.5 0.37 0.09 11.2 1.1e�3
CDR = a0 + a1l1 4.9 0.36 0.16 24.1 3.0e�6
CDR = a0 + a1x1 �5.5 0.35 0.20 30.0 2.4e�7
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with a large number of parameters k, an application of the princi-
pal of Occam’s razor. More precisely, the maximum likelihood of a
model with a parameters needs to improve over a model with b
parameters, with a P b, n(a�b) times to achieve a smaller or equal
BIC. In addition to the coordinates, we included age as an indepen-
dent variable in the models involving MMSE and CDR/diagnosis in
the model selection process. This essentially controls for age; inde-
pendent variables (PCA or manifold coordinates) that do not im-
prove the models over using age as an independent variable are
ignored. In all cases ages did not show up in the best fitting models
for PCA and the manifold coordinates. Thus, adding age informa-
tion does not lead to an improved fit under the BIC criterion.

We denote the manifold coordinates with x = (x1,. . .,xm) and the
PCA coordinates with l = (l1,. . .,lm). Thus the notation

age ¼ a0 þ
X3

i¼1

aixi ð13Þ

describes a multiple linear regression model of age on the first three
manifold coordinates.

OASIS data Table 1 shows the optimal linear regression results
for the OASIS data set. In this data set only 235 out of the 416 sub-
jects have MMSE scores. The regression for MMSE is thus only per-
formed on this subset of the population. For MMSE and CDR the
manifold model is the statistically most significant (largest F),
and it has the largest R2 statistic with the smallest residual but
the differences between the PCA and manifold model are very
small. For age, the best model is achieved with a 5D PCA, while
the manifold representation achieves the best fit with the first
three coordinates. This nicely supports the 3D manifold suggested
by the reconstruction errors in Fig. 7. Note that the manifold model
achieves similar power with three parameters as does the PCA
model with five parameters.

The residual for MMSE and CDR is fairly large and it is not clear
if the statistical significance is due to the relatively large sample
size and large amount of healthy young subjects. Table 2 shows
optimal linear models, as before, selected based on BIC and exhaus-
tive search, for subjects aged 60–80. The results from this subset
are comparable to the results on the full data. This suggests that
the manifold is not only capturing the variation induced by the
Table 3
Optimal linear regression models from the ADNI data set.

Model t Re

Age ¼ a0 þ a1l1 þ
P5

i¼4aili 5.41/�2.24/�2.50 5.5

Age ¼ a0 þ
P2

i¼1aixi
4.83/2.34 5.7

MMSE = a0 + a1age 0.65 2.4
MMSE = a0 + a1l1 �2.53 2.3
MMSE = a0 + a1x1 �2.83 2.3

Diagnosis = a0 + a1 age �0.74 0.6
Diagnosis = a0 + a1l1 2.54 0.6
Diagnosis = a0 + a1x1 + a6x6 3.55/�3.30 0.6
large differences in age among the subjects but also important clin-
ical trends.

ADNI data: Table 3 shows the optimal linear regression results
for the ADNI data set. For MMSE and diagnosis the manifold model
is the statistically most significant with the smallest residual. For
age the best model is achieved with three dimensions of the PCA
coordinates, while the manifold representation achieves the best
fit with the first two coordinates. Note that the three PCA coordi-
nates that best explain age are not the first three (dominant) prin-
cipal components which capture the most variation.

For explanation of diagnosis note that the manifold model has a
significantly lower p-value than either age or the PCA coordinates.
Of further interest is the inclusion of the sixth dimension of the
manifold model for explanation of diagnosis, which supports the
claims made in Section 4.3.

Fig. 12 shows residuals from the linear models based on mani-
fold coordinates plotted against the residuals from the PCA regres-
sion. The regression residuals show roughly the same behavior, i.e.
large residuals in PCA correspond to large residuals in the manifold
model of the same sign. However for the regression on diagnosis
the residuals for the manifold model show a larger variation for
subjects where PCA predicts the diagnosis fairly accurately. The
manifold regression model yields a model with a more significant
slope and thus some of the subject diagnosed with MCI tend more
sidual R2 F p-value

0.21 13.5 7.3e�8

0.16 14.39 1.8e�6

3 0.003 0.43 0.52
9 0.04 6.38 0.01
7 0.05 8.03 0.005

8 0.003 0.54 0.46
7 0.04 6.43 0.012
4 0.13 11.74 1.8e�5
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Fig. 12. Residuals from the manifold regression model against the PCA regression model for: (a) MMSE and (b) diagnosis. The bottom row shows three selected images with
large residuals. The first image has a very low MMSE score that is not well represented in the image set. The second image shows a subject with large ventricle scores but a
perfect MMSE scores. Both approaches relate ventricle size to lower MMSE scores and thus predict a lower MMSE score. The third subject shows the inverse, a subject with
small ventricles but a relatively low MMSE score.
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towards normal or AD, while the PCA model is closer to a constant
model and is more likely to predict MCI.

Fig. 13 shows axial slices of constructed images on a grid sam-
pled along dimension one and six of the manifold coordinates to
illustrate the differences occurring in these dimensions. The shad-
ing represent the slope of the linear model of row 8 in Table 3.
Dimension one captures the differences in ventricle size, while
dimension six indicates an increase in the left lateral ventricle from
top to bottom.
4.5. Computational considerations

The distance computation between two images requires an
elastic registration which takes with our multiresolution imple-
mentation about 1 min on a 128 � 128 � 80 volume. The cost for
learning the manifold from the 416 images of the OASIS database
Fig. 13. Slice number 80 of the reconstructed images along the statistically
significant manifold coordinates (first and sixth dimension) for explaining the
diagnosis. The shading indicates the gradient of the corresponding linear model on
diagnosis (row 8 in Table 3).
is high and requires about a week using a cluster of two 50 GHz
processors.

The implementation of the elastic registration, as well as an iso-
map implementation, is available at http://www.cs.utah.edu/sger-
ber/software.
5. Conclusions

This paper presents a novel approach to represent the space of
brain images by a manifold model. The linear regression results
show that the generative manifold model is able to uncover, using
the raw image data only, statistically significant important rela-
tions to clinical data.

An open question is whether the manifolds shown here repre-
sent the inherent amount of information about shape variability
in the data or whether they reflect particular choices in the pro-
posed approach. In particular, implementation specific enhance-
ments on image metric, reconstruction, and manifold kernel
regression could lead to refined results.

There are various directions for improvements on the proposed
method. The diffeomorphic metric is restricted to images that are
within the orbit of a given template under the transformation. Re-
cent work on metamorphosis (Trouvé and Younes, 2005) provides
a elegant framework that yields a metric over the complete image
space. The generative manifold model is directly applicable to an
image space endowed with a metric based on metamorphosis. An-
other area of future work is to extend the approach to other image
modalities. A metric that captures different properties or works
with different image modalities can easily be integrated into the
system.

An interesting question is whether the learned submanifold is
truly nonlinear or if an approach such as principal geodesic analy-

http://www.cs.utah.edu/sgerber/software
http://www.cs.utah.edu/sgerber/software
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sis (PGA) (Fletcher et al., 2004), a generalization of PCA to Rie-
mannian manifolds, leads to similar results. Furthermore, PGA
could be used to do analysis on the learned manifold.
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